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Preliminary ANN

It is strongly recommended to learn CS224d or CS224n, a MOOC o↵ered by
Stanford University.
Very often, softmax and cross entropy are used for labeling, so the formulas are
list here:
For a given input vector x, softmax function is defined as

softmax(x)i =
exp(xi)P
j exp(xj)

. (1)

For an one-hot vector y and a predicted vector ȳ, cross entropy is defined as

CE(y, ȳ) = �
X

i

yi log(ȳi). (2)
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Understanding Backward propagation (BP) neural network

Backward propagation NN was a classical one, and the advantage of learning BP
NN is to observe the error propagation distribution by using basic but fundamental
gradient analysis.
Please note that the first step to learn NN is to learn to read NN graph and map
the neuron elements back to notations and symbols.
This section will be very fascinated, I promise. (Referred from CS224D: Deep
Learning for NLP, Lectrue Notes: Part III.)
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Understanding BP neural network — CONT

A single Layer of Neurons

Figure 1: One Neuron Computation.
This image captures how in a sigmoid
neuron, the input vector x is first
scaled, summed, added to a bias unit,
and then passed to the squashing
sigmoid function.

This unit takes an n-dimensional input
vector x and produces the scalar
activation (output) a. This neuron is
also associated with an n-dimensional
weight vector, w, and a bias scalar, b.
The output of this neuron is then:

a =
1

1 + exp(�(wTx+ b)
.
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Understanding BP neural network — CONT

Feed-forward computation

So far we have seen how an input vector x 2 Rn can be fed to a layer of sigmoid
units to create activations a 2 R. But what is the intuition behind doing so?
Let us consider the following NER as an example:

”Museums in Paris are amazing”

Here we want to classify whether or not the center word ”Paris” is a named-entity.
In this case, we want to capture both the presence of the words in the window of
word vectors, and interactions between the words. That intention make the fully
connected network meaningful!
Thus, we use matrix U 2 Rm⇥1 to generate an unnormalized score for a
classification task from the activations:

s = UTa = UT f(Wx+ b).
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Understanding BP neural network — CONT

Feed-forward computation

Figure 2: This image captures how a
simple feed-forward network might
compute its output.

Analysis of Dimensions:
If we represent each word using a
4-dimensional word vector and we use a
5-word window as input (as in the
example), then the input x 2 R20.
If we use 8 sigmoid units in the hidden
layer and generate 1 score output from
the activations, then W 2 R8⇥20, a and
b 2 R8, U 2 R8⇥1, s 2 R

Jingbo Xia (HZAU) Seminar materials September 11, 2018 10 / 59

Understanding BP neural network — CONT

Maximum Margin Objective Function

Using the previous example, if we call the score computed for the ”true” labeled
window ”Museums in Paris are amazing” as s and the score computed for the
”false” labeled window ”Not all museums in Paris” as sc (subscripted as c to
signify that the window is ”corrupt”).
Then, our objective function would be to maximize (s� sc) or to minimize
(sc � s). In another word:

Score(Positive window, ”Museum in Paris is amazing”) = s, (3)

Score(Negative window, ”Not all museum in Paris”) = sc. (4)

Thus the optimization objective is:

minimizeJ = max(sc � s, 0). (5)

In some case, we would want error to be calculated if (s� sc < �) and not just
when (s� sc < 0). Thus, we modify the optimization objective:

minimizeJ = max(�+ sc � s, 0). (6)
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Understanding BP neural network — CONT

Training with Backpropagation — Elemental

We typically need the gradient information for any parameter as required in the
update equation:

✓(t+ 1) = ✓(t)� ↵ ·r✓(t) · J . (7)

Let’s establish some notation that will make it easier to generalize this model:

xi is an input to the neural network.
s is the output of the neural network.
Each layer (including the input and output layers) has neurons which receive
an input and produce an output. The j-th neuron of layer k receives the

scalar input zj(k) and produces the scalar j activation output a(k)j .

We will call the backpropagated error calculated at z(k)j as �(k)j .
Layer 1 refers to the input layer and not the first hidden layer. For the input

layer, xj = z(1)j = a(1)j .

W (k) is the transfer matrix that maps the output from the k-th layer to the
input to the (k + 1)-th.
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Understanding BP neural network — CONT

Training with Backpropagation — Elemental

Please let me remind you of how to trace the subscript of symbols.
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Understanding BP neural network — CONT

Training with Backpropagation — Elemental

Figure 3: An 4-2-1 NN for
backpropagation analysis. Here, neuron
j on level (k) receive input z(k)j and

produce activation output a(k)
j .

Let us begin: Assume � = 1 in
equation(6), and suppose the cost
J = (1 + sc � s) is positive and we want

to perform the update of parameter W (1)
14

(in Figure 3 , we must realize that W (1)
4

only contributes to z(2)1 and thus a(2)1 .
This fact is crucial to understanding
backpropagation — backpropagated
gradients are only a↵ected by values they
contribute to.
We can see from the max-margin loss
that:

@J
@s

= �@J
@sc

= �1. (8)

Therefore, we will work @s

@W (1)
ij

here for

simplicity.
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Understanding BP neural network — CONT

Training with Backpropagation — Elemental

For i = 1, 2, 3, 4; j = 1, 2,

@s

@W (1)
ij

= @W (2)a(2)

@W (1)
ij

(* s = W 2a(2) + b(2) = W 2
1 a

(2)
1 +W 2

2 a
(2)
2 + b(2))

=
@W (2)

i a(2)
i

@W (1)
ij

= W (2)
i

@a(2)
i

@W (1)
ij

= W (2)
i

@a(2)
i

@z(2)
i

@z(2)
i

@W (1)
ij

= W (2)
i

@f(z(2)
i )

@z(2)
i

@z(2)
i

@W (1)
ij

= W (2)
i f 0(z(2)i )

@z(2)
i

@W (1)
ij

(* z(2)i = b(1)i + a(1)1 W (1)
i1 + a(1)2 W (1)

i2 + a(1)3 W (1)
i3 + a(1)4 W (1)

i4 )

= W (2)
i f 0(z(2)i ) @

@W (1)
ij

(b(1)i + a(1)1 W (1)
i1 + a(1)2 W (1)

i2 + a(1)3 W (1)
i3 + a(1)4 W (1)

i4 )

= W (2)
i f 0(z(2)i )a(1)j

(9)
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Understanding BP neural network — CONT

Training with Backpropagation — Elemental

Figure 4: This subnetwork shows the
relevant parts of the network required
to update W (1)

ij .

From Equation (8) and (9), we know

that the gradient of W (1)
ij to the loss

function is:

@J
@W (1)

ij

= W (2)
i f 0(z(2)i )a(1)j , (10)

and this value later is shown to
essentially be the error propagation
backwards from the i-th neuron in layer

2, �(2)i :

�(2)i := W (2)
i f 0(z(2)i ). (11)

To observe the update of W (1)
14 , an easy view is taken from relevant part of the

network, see figure 4.
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Understanding BP neural network — CONT I

Training with Backpropagation — Elemental

Let us discuss the ”error sharing/distribution” interpretation of backpropagation

better using Figure 4 as an example. Say we were to update W (1)
14 :

Step 1: Please recall that the backpropagated error calculated at z(k)j was defined

as �(k)j .

Step 2: We start with the an error signal of 1 propagating backwards from a(3)1 .

Step 3: As z(3)1 = a(3)1 in this case, and the error is still 1. This is now known as

�(3)1 = 1.

Step 4: At this point, the error signal of 1 has reached z(3)1 . We now need 1 to
distribute the error signal so that the ”fair share” of the error reaches to

a(2)1 .

Step 5: This amount is the (Error signal at z(3)1 = �(3)1 ) ⇥W (2)
1 = W (2)

1 . Thus,

the error at a(2)1 equals to W (2)
1 .
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Understanding BP neural network — CONT II

Training with Backpropagation — Elemental

Step 6: As we did in step 2, we need to move the error across the neuron which

maps z(2)1 to a(2)1 . We do this by multiplying the error signal at a(2)1 by

the local gradient of the neuron which happens to be f 0(z(2)1 ).

Step 7: Thus, the error signal at z(2)1 is f 0(z(2)1 )W (2)
1 . This is known as �(2)1 .

Step 8: Finally, we need to distribute the ”fair share” of the error to W (1)
14 by

simply multiplying it by the input it was responsible for forwarding, which

happens to be a(1)4 .

Step 9: Thus, the gradient of the loss with respect to W (1)
14 is calculated to be

a(1)4 f 0(z(2)1 )W (2)
1 . (12)
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Understanding BP neural network — CONT

Training with Backpropagation — Elemental

From the combination of equation(10) and equation (12), we have

@J
@W (1)

ij

= �(2)i ⇥ a(1)j . (13)

Conclusion of BACKFORWARD PROPAGATION

This is an amazing result, which shows that the gradient of loss computation
equals to the computation of 1 error back forward computation!

” Quote from CS224d: Notice that the result we arrive at using this approach is
exactly the same as that we arrived at using explicit di↵erentiation earlier. Thus,
we can calculate error gradients with respect to a parameter in the network using
either the chain rule of di↵erentiation or using an error sharing and distributed
flow approach ? both of these approaches happen to do the exact same thing but
it might be helpful to think about them one way or another.”
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Understanding LSTM

Well, how to understand a typical RNN model, LSTM? It’s pretty well-known!

We will borrow Zheng’s example from Neurocomputing ...
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Understanding LSTM

it = �(Wxixt +Whiht�1 +Wcict�1 + bi)
ft = �(Wxfxt +Whfht�1 +Wcfct�1 + bf )
zt = tanh(Wxcxt +Whcht�1 + bc)
ct = ftct�1 + itzt
ot = �(Wxoxt +Whoht�1 +Wcoct + bo)
ht = ot � tanh(ct)

(14)

The LSTM architecture consists of a set
of recurrently connected subnets, known
as memory blocks.

xt: input; ht: hidden layer; ct: cell
level.

zt 2 (�1, 1): Block gate; it 2 (0, 1):
Input gate; ft 2 (0, 1): Forget gate.

Figure 5: LSTM block.

Ref: Zheng, 2017 1.

1
Zheng S, Hao Y, Lu D, Bao H, Xu J, Hao H, Xu B. Joint entity and relation extraction

based on a hybrid neural network. Neurocomputing. 2017 Sep 27;257:59-66.
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Understanding LSTM – CONT.

NER: Concatenate the bi-LSTM outputs,�!
ht and

 �
ht , and we have ht = [

 �
ht ,
�!
ht ]. Let

ht be the input of encoding LSTM, and
st be the hidden layer of encoding LSTM.
Modify equation (??) to

it = �(Whiht+Wsist�1+WTiTt�1+bi),

where Tt�1 is actually the former Tag pre-
dicted vector, see figure 6.

Ti = Wstst + bT —Linear!
yt = WTyTt + by —Linear!

pit =
exp(yj

t )Pnt
j=1 exp(yj

t )
—Softmax!

(15)

nt is the total number of entity tags.

Figure 6: Joint extraction of NER
and Relation by Zheng
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Understanding LSTM – CONT.

The relation classification model is sim-
ilar. Just merge Merge Layer ht into
Word Embedding W1,W2, · · · ,Wn, and
then followed with a CNN.
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